From d14bbdd678379ae401ea79e9a0afefc1ac75edae Mon Sep 17 00:00:00 2001 From: Dave West Date: Tue, 22 Jan 2008 10:16:47 +0000 Subject: [PATCH] Clean up in Hash functions. Some bug fixes too. Addition of hash ittereator functions. This is Dothebarts spiffing new hash functions. --- libcitadel/Makefile.in | 6 +- libcitadel/hash_todo.txt | 55 ++ libcitadel/lib/hash.c | 319 +++++++++++- libcitadel/lib/hash.h | 14 - libcitadel/lib/libcitadel.h | 29 ++ libcitadel/lib/lookup3.c | 983 ++++++++++++++++++++++++++++++++++++ libcitadel/lib/lookup3.h | 9 + 7 files changed, 1384 insertions(+), 31 deletions(-) create mode 100644 libcitadel/hash_todo.txt delete mode 100644 libcitadel/lib/hash.h create mode 100644 libcitadel/lib/lookup3.c create mode 100644 libcitadel/lib/lookup3.h diff --git a/libcitadel/Makefile.in b/libcitadel/Makefile.in index 710d4f3bb..72f317499 100755 --- a/libcitadel/Makefile.in +++ b/libcitadel/Makefile.in @@ -101,7 +101,7 @@ LINK_LIB = $(LIBTOOL) $(LTFLAGS) --mode=link $(COMPILE) -no-undefined $(VSNFLAG) LINK_EXE = $(LIBTOOL) $(LTFLAGS) --mode=link $(COMPILE) $(LDFLAGS) -o $@ LINK_CXX_EXE = $(LIBTOOL) $(LTFLAGS) --mode=link $(CXXCOMPILE) $(LDFLAGS) -o $@ -LIB_OBJS = lib/libcitadel.lo lib/mime_parser.lo lib/tools.lo lib/vcard.lo lib/hash.lo +LIB_OBJS = lib/libcitadel.lo lib/mime_parser.lo lib/tools.lo lib/vcard.lo lib/hash.lo lib/lookup3.lo $(LIBRARY): $(LIB_OBJS) $(LINK_LIB) $(LIB_OBJS) @@ -109,8 +109,8 @@ lib/libcitadel.lo: lib/libcitadel.c lib/libcitadel.h lib/mime_parser.lo: lib/mime_parser.c lib/libcitadel.h lib/tools.lo: lib/tools.c lib/libcitadel.h lib/vcard.lo: lib/vcard.c lib/libcitadel.h -lib/hash.lo: lib/hash -.c lib/libcitadel.h +lib/lookup3.lo: lib/lookup3.c lib/libcitadel.h +lib/hash.lo: lib/hash.c lib/libcitadel.h .SUFFIXES: .c .cpp .lo .o diff --git a/libcitadel/hash_todo.txt b/libcitadel/hash_todo.txt new file mode 100644 index 000000000..ca1072afd --- /dev/null +++ b/libcitadel/hash_todo.txt @@ -0,0 +1,55 @@ +This file is for notes on converting things to use the hash functions Dothebart added. + + +Convert the server config to use these functions. +Alter citserver to read key value pairs for the config instead of an ordered file. +Alter citserver to store the config in the data base. +Add code to serv_upgrade to convert the current file into a normal message in the DB. +serv_upgrade will read the file create at setup time on first boot to get it into +the DB this way the existing setup tools don't need to be altered. + +Webcit can then ask for the site wide config using normal MSG* commands. +Webcit will need to parse the message into key value pairs which is dead simple to do. + +Hmm, just a thought but has anyone wondered about locking things like this so 2 Aides can't +change them at the same time which would result in some changes getting lost. + + + +We can use this code for any key value pair situation since the has should be faster than sequential search. +Possible candidates are. + + +get_user and friends. +Load the user list into the hash at boot. +Write new entries to the DB when the occur. +Use 2 hashes so we can quickly get user by name or number. This might be possible since +the hash value can be any object. user name hash is master and sync'd wuth DB and has real destructor, +user number hash uses exact same user object but dummy destructor that does nothing. That way +destructing a key from the hash has expected results. Destructor could also call purge_user maybe? +Perhaps delay writing changes if the server is busy. +This would save on DB accesses which can be a bottle neck. +Definately would save on DB reads. + + +netconfigs?? + + +mail.aliases +Load into a hash at startup and done with? +Perhaps even bring this into the DB as a MSG update the MSG if the file changes for backward compat. Then +we can make it changeable via client. File gets out of date though. +Read from the DB as needed, cache into the hash? + + +Webcit URL's +Some of these might benefit from a hash. +bstr does a sequential search for the key so a hash would be faster in cases where the URL contains lots of +stuff like site config and probably more. + + +Since the hash can store arbitrary objects we can probably use it to store contexts and threads. +At first this seems as though it won't do much for performance but done right I think we will be +able to do away with the locking of the entire list and reduce the granularity to locking only the context/thread struct +we are currently working on. +Perhaps a modified hash that locks the retrieved entry and unlocks the entry by a call to unlock key. diff --git a/libcitadel/lib/hash.c b/libcitadel/lib/hash.c index f61f136f7..884608a43 100644 --- a/libcitadel/lib/hash.c +++ b/libcitadel/lib/hash.c @@ -1,37 +1,328 @@ -#include "hash.h" +#include +#include +#include +//dbg +#include +#include "libcitadel.h" +#include "lookup3.h" +typedef struct Payload Payload; -typedef struct HashList { - void *Members; - long nMembersUsed; - long MemberSize; - -}; - -typedef struct Payload { +struct Payload { void *Data; - char *HashKey; DeleteHashDataFunc Destructor; }; -typedef struct HashKey { +struct HashKey { long Key; long Position; + char *HashKey; + long HKLen; }; +struct HashList { + Payload **Members; + HashKey **LookupTable; + char **MyKeys; + long nMembersUsed; + long MemberSize; +}; + +struct HashPos { + long Position; +}; + +int PrintHash(HashList *Hash) +{ + char *foo; + char *bar; + long key; + long i; + if (Hash->MyKeys != NULL) + free (Hash->MyKeys); + + Hash->MyKeys = (char**) malloc(sizeof(char*) * Hash->nMembersUsed); + printf("----------------------------------\n"); + for (i=0; i < Hash->nMembersUsed; i++) { + + if (Hash->LookupTable[i] == NULL) + { + foo = ""; + bar = ""; + key = 0; + } + else + { + key = Hash->LookupTable[i]->Key; + foo = Hash->LookupTable[i]->HashKey; + bar = (char*) Hash->Members[Hash->LookupTable[i]->Position]->Data; + } + printf (" ---- Hashkey[%ld][%ld]: '%s' Value: '%s' \n", i, key, foo, bar); + } + printf("----------------------------------\n"); + return 0; +} + + -int GetHash(HashList *Hash, char *HKey, void **Payload) +HashList *NewHash(void) { + HashList *NewList; + NewList = malloc (sizeof(HashList)); + memset(NewList, 0, sizeof(HashList)); + + NewList->Members = malloc(sizeof(Payload*) * 100); + memset(NewList->Members, 0, sizeof(Payload*) * 100); + + NewList->LookupTable = malloc(sizeof(HashKey*) * 100); + memset(NewList->LookupTable, 0, sizeof(HashKey*) * 100); + + NewList->MemberSize = 100; + + return NewList; } -void Put(HashList *Hash, char *HKey, long HKLen, void *Payload, DeleteHashDataFunc DeleteIt) + +static void DeleteHashPayload (Payload *Data) { + if (Data->Destructor) + Data->Destructor(Data->Data); + else + free(Data->Data); +} +void DeleteHash(HashList **Hash) +{ + int i; + HashList *FreeMe; + + FreeMe = *Hash; + if (FreeMe == NULL) + return; + for (i=0; i < FreeMe->nMembersUsed; i++) + { + if (FreeMe->Members[i] != NULL) + { + DeleteHashPayload(FreeMe->Members[i]); + free(FreeMe->Members[i]); + } + if (FreeMe->LookupTable[i] != NULL) + { + free(FreeMe->LookupTable[i]->HashKey); + free(FreeMe->LookupTable[i]); + } + } + + free(FreeMe->LookupTable); + free(FreeMe->Members); + if (FreeMe->MyKeys != NULL) + free(FreeMe->MyKeys); + + free (FreeMe); + *Hash = NULL; +} + +static void InsertHashItem(HashList *Hash, + long HashPos, + long HashBinKey, + char *HashKeyStr, + long HKLen, + void *Data, + DeleteHashDataFunc Destructor) +{ + Payload *NewPayloadItem; + HashKey *NewHashKey; + + if (Hash->nMembersUsed >= Hash->MemberSize) + { + /* Ok, Our space is used up. Double the available space. */ + Payload **NewPayloadArea; + HashKey **NewTable; + + NewPayloadArea = (Payload**) malloc(sizeof(Payload*) * Hash->MemberSize * 2); + memset(&NewPayloadArea[Hash->MemberSize], 0, sizeof(Payload*) * Hash->MemberSize); + memcpy(NewPayloadArea, Hash->Members, sizeof(Payload*) * Hash->MemberSize); + + NewTable = malloc(sizeof(HashKey*) * Hash->MemberSize * 2); + memset(&NewTable[Hash->MemberSize], 0, sizeof(HashKey*) * Hash->MemberSize); + memcpy(NewTable, &Hash->LookupTable, sizeof(HashKey*) * Hash->MemberSize); + + Hash->MemberSize *= 2; + } + + NewPayloadItem = (Payload*) malloc (sizeof(Payload)); + NewPayloadItem->Data = Data; + NewPayloadItem->Destructor = Destructor; + + NewHashKey = (HashKey*) malloc (sizeof(HashKey)); + NewHashKey->HashKey = (char *) malloc (HKLen + 1); + NewHashKey->HKLen = HKLen; + memcpy (NewHashKey->HashKey, HashKeyStr, HKLen + 1); + NewHashKey->Key = HashBinKey; + NewHashKey->Position = Hash->nMembersUsed; + + if ((Hash->nMembersUsed != 0) && + (HashPos != Hash->nMembersUsed) ) { + long InsertAt; + long ItemsAfter; + + ItemsAfter = Hash->nMembersUsed - HashPos; + InsertAt = HashPos; + + if (ItemsAfter > 0) + { + memmove(&Hash->LookupTable[InsertAt + 1], + &Hash->LookupTable[InsertAt], + ItemsAfter * sizeof(HashKey*)); + } + } + + Hash->Members[Hash->nMembersUsed] = NewPayloadItem; + Hash->LookupTable[HashPos] = NewHashKey; + Hash->nMembersUsed++; +} + +static long FindInHash(HashList *Hash, long HashBinKey) +{ + long SearchPos; + long StepWidth; + + SearchPos = Hash->nMembersUsed / 2; + StepWidth = SearchPos / 2; + while ((SearchPos > 0) && + (SearchPos < Hash->nMembersUsed)) + { + /** Did we find it? */ + if (Hash->LookupTable[SearchPos]->Key == HashBinKey){ + return SearchPos; + } + /** are we Aproximating in big steps? */ + if (StepWidth > 1){ + if (Hash->LookupTable[SearchPos]->Key > HashBinKey) + SearchPos -= StepWidth; + else + SearchPos += StepWidth; + StepWidth /= 2; + } + else { /** We are right next to our target, within 4 positions */ + if (Hash->LookupTable[SearchPos]->Key > HashBinKey) { + if ((SearchPos > 0) && + (Hash->LookupTable[SearchPos - 1]->Key < HashBinKey)) + return SearchPos; + SearchPos --; + } + else { + if ((SearchPos + 1 < Hash->nMembersUsed) && + (Hash->LookupTable[SearchPos + 1]->Key > HashBinKey)) + return SearchPos; + SearchPos ++; + } + StepWidth--; + } + } + return SearchPos; +} + + + +inline static long CalcHashKey (char *HKey, long HKLen) +{ + return hashlittle(HKey, HKLen, 9283457); +} + + +void Put(HashList *Hash, char *HKey, long HKLen, void *Data, DeleteHashDataFunc DeleteIt) +{ + long HashBinKey; + long HashAt; + + + HashBinKey = CalcHashKey(HKey, HKLen); + HashAt = FindInHash(Hash, HashBinKey); + + if (Hash->LookupTable[HashAt] == NULL){ + InsertHashItem(Hash, HashAt, HashBinKey, HKey, HKLen, Data, DeleteIt); + } + else if (Hash->LookupTable[HashAt]->Key > HashBinKey) { + InsertHashItem(Hash, HashAt, HashBinKey, HKey, HKLen, Data, DeleteIt); + } + else if (Hash->LookupTable[HashAt]->Key < HashBinKey) { + InsertHashItem(Hash, HashAt + 1, HashBinKey, HKey, HKLen, Data, DeleteIt); + } + else { /* Ok, we have a colision. replace it. */ + long PayloadPos; + + PayloadPos = Hash->LookupTable[HashAt]->Position; + DeleteHashPayload(Hash->Members[PayloadPos]); + Hash->Members[PayloadPos]->Data = Data; + Hash->Members[PayloadPos]->Destructor = DeleteIt; + } +} + +int GetHash(HashList *Hash, char *HKey, long HKLen, void **Data) +{ + long HashBinKey; + long HashAt; + + HashBinKey = CalcHashKey(HKey, HKLen); + HashAt = FindInHash(Hash, HashBinKey); + if ((HashAt < 0) || (HashAt >= Hash->nMembersUsed)) { + *Data = NULL; + return 0; + } + else { + long MemberPosition; + + MemberPosition = Hash->LookupTable[HashAt]->Position; + *Data = Hash->Members[MemberPosition]->Data; + return 1; + } } int GetKey(HashList *Hash, char *HKey, long HKLen, void **Payload) { + return 0; +} + +int GetHashKeys(HashList *Hash, const char ***List) +{ + long i; + if (Hash->MyKeys != NULL) + free (Hash->MyKeys); + + Hash->MyKeys = (char**) malloc(sizeof(char*) * Hash->nMembersUsed); + for (i=0; i < Hash->nMembersUsed; i++) { + + Hash->MyKeys[i] = Hash->LookupTable[i]->HashKey; + } + *List = Hash->MyKeys; + return Hash->nMembersUsed; +} + +HashPos *GetNewHashPos(void) +{ + HashPos *Ret; + + Ret = (HashPos*)malloc(sizeof(HashPos)); + Ret->Position = 0; + return Ret; } -int GetHashKeys(HashList *Hash, char **List) +void DeleteHashPos(HashPos **DelMe) { + free(*DelMe); + *DelMe = NULL; +} + +int GetNextHashPos(HashList *Hash, HashPos *At, long *HKLen, char **HashKey, void **Data) +{ + long PayloadPos; + + if (Hash->nMembersUsed <= At->Position) + return 0; + *HKLen = Hash->LookupTable[At->Position]->HKLen; + *HashKey = Hash->LookupTable[At->Position]->HashKey; + PayloadPos = Hash->LookupTable[At->Position]->Position; + *Data = Hash->Members[PayloadPos]->Data; + At->Position++; + return 1; } diff --git a/libcitadel/lib/hash.h b/libcitadel/lib/hash.h deleted file mode 100644 index 3e8be3d43..000000000 --- a/libcitadel/lib/hash.h +++ /dev/null @@ -1,14 +0,0 @@ - -typedef struct HashList HashList; - -typedef struct HashKey HashKey; - -typedef void (*DeleteHashDataFunc)(void * Data); - -int GetHash(HashList *Hash, char *HKey, void **Payload); - -void Put(HashList *Hash, char *HKey, long HKLen, void *Payload, DeleteHashDataFunc DeleteIt); - -int GetKey(HashList *Hash, char *HKey, long HKLen, void **Payload); - -int GetHashKeys(HashList *Hash, char **List); diff --git a/libcitadel/lib/libcitadel.h b/libcitadel/lib/libcitadel.h index 2e3fa4606..9b8462be6 100644 --- a/libcitadel/lib/libcitadel.h +++ b/libcitadel/lib/libcitadel.h @@ -234,3 +234,32 @@ char *vcard_get_prop(struct vCard *v, char *propname, int is_partial, char *vcard_serialize(struct vCard *); void vcard_fn_to_n(char *vname, char *n, size_t vname_size); void remove_charset_attribute(char *strbuf); + +typedef struct HashList HashList; + +typedef struct HashKey HashKey; + +typedef struct HashPos HashPos; + +typedef void (*DeleteHashDataFunc)(void * Data); + + + +HashList *NewHash(void); +void DeleteHash(HashList **Hash); + + +int GetHash(HashList *Hash, char *HKey, long HKLen, void **Data); + +void Put(HashList *Hash, char *HKey, long HKLen, void *Data, DeleteHashDataFunc DeleteIt); + +int GetKey(HashList *Hash, char *HKey, long HKLen, void **Data); + +int GetHashKeys(HashList *Hash, const char ***List); + +int PrintHash(HashList *Hash); + +HashPos *GetNewHashPos(void); +void DeleteHashPos(HashPos **DelMe); + +int GetNextHashPos(HashList *Hash, HashPos *At, long *HKLen, char **HashKey, void **Data); diff --git a/libcitadel/lib/lookup3.c b/libcitadel/lib/lookup3.c new file mode 100644 index 000000000..1cb540a2c --- /dev/null +++ b/libcitadel/lib/lookup3.c @@ -0,0 +1,983 @@ +/* +------------------------------------------------------------------------------- +lookup3.c, by Bob Jenkins, May 2006, Public Domain. + +These are functions for producing 32-bit hashes for hash table lookup. +hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() +are externally useful functions. Routines to test the hash are included +if SELF_TEST is defined. You can use this free for any purpose. It's in +the public domain. It has no warranty. + +You probably want to use hashlittle(). hashlittle() and hashbig() +hash byte arrays. hashlittle() is is faster than hashbig() on +little-endian machines. Intel and AMD are little-endian machines. +On second thought, you probably want hashlittle2(), which is identical to +hashlittle() except it returns two 32-bit hashes for the price of one. +You could implement hashbig2() if you wanted but I haven't bothered here. + +If you want to find a hash of, say, exactly 7 integers, do + a = i1; b = i2; c = i3; + mix(a,b,c); + a += i4; b += i5; c += i6; + mix(a,b,c); + a += i7; + final(a,b,c); +then use c as the hash value. If you have a variable length array of +4-byte integers to hash, use hashword(). If you have a byte array (like +a character string), use hashlittle(). If you have several byte arrays, or +a mix of things, see the comments above hashlittle(). + +Why is this so big? I read 12 bytes at a time into 3 4-byte integers, +then mix those integers. This is fast (you can do a lot more thorough +mixing with 12*3 instructions on 3 integers than you can with 3 instructions +on 1 byte), but shoehorning those bytes into integers efficiently is messy. +------------------------------------------------------------------------------- +*/ +//#define SELF_TEST 1 + +#include /* defines printf for tests */ +#include /* defines time_t for timings in the test */ +#include /* defines uint32_t etc */ +#include /* attempt to define endianness */ +#ifdef linux +# include /* attempt to define endianness */ +#endif +#include "lookup3.h" +/* + * My best guess at if you are big-endian or little-endian. This may + * need adjustment. + */ +#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ + __BYTE_ORDER == __LITTLE_ENDIAN) || \ + (defined(i386) || defined(__i386__) || defined(__i486__) || \ + defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) +# define HASH_LITTLE_ENDIAN 1 +# define HASH_BIG_ENDIAN 0 +#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ + __BYTE_ORDER == __BIG_ENDIAN) || \ + (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) +# define HASH_LITTLE_ENDIAN 0 +# define HASH_BIG_ENDIAN 1 +#else +# define HASH_LITTLE_ENDIAN 0 +# define HASH_BIG_ENDIAN 0 +#endif + +#define hashsize(n) ((uint32_t)1<<(n)) +#define hashmask(n) (hashsize(n)-1) +#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) + +/* +------------------------------------------------------------------------------- +mix -- mix 3 32-bit values reversibly. + +This is reversible, so any information in (a,b,c) before mix() is +still in (a,b,c) after mix(). + +If four pairs of (a,b,c) inputs are run through mix(), or through +mix() in reverse, there are at least 32 bits of the output that +are sometimes the same for one pair and different for another pair. +This was tested for: +* pairs that differed by one bit, by two bits, in any combination + of top bits of (a,b,c), or in any combination of bottom bits of + (a,b,c). +* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed + the output delta to a Gray code (a^(a>>1)) so a string of 1's (as + is commonly produced by subtraction) look like a single 1-bit + difference. +* the base values were pseudorandom, all zero but one bit set, or + all zero plus a counter that starts at zero. + +Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that +satisfy this are + 4 6 8 16 19 4 + 9 15 3 18 27 15 + 14 9 3 7 17 3 +Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing +for "differ" defined as + with a one-bit base and a two-bit delta. I +used http://burtleburtle.net/bob/hash/avalanche.html to choose +the operations, constants, and arrangements of the variables. + +This does not achieve avalanche. There are input bits of (a,b,c) +that fail to affect some output bits of (a,b,c), especially of a. The +most thoroughly mixed value is c, but it doesn't really even achieve +avalanche in c. + +This allows some parallelism. Read-after-writes are good at doubling +the number of bits affected, so the goal of mixing pulls in the opposite +direction as the goal of parallelism. I did what I could. Rotates +seem to cost as much as shifts on every machine I could lay my hands +on, and rotates are much kinder to the top and bottom bits, so I used +rotates. +------------------------------------------------------------------------------- +*/ +#define mix(a,b,c) \ +{ \ + a -= c; a ^= rot(c, 4); c += b; \ + b -= a; b ^= rot(a, 6); a += c; \ + c -= b; c ^= rot(b, 8); b += a; \ + a -= c; a ^= rot(c,16); c += b; \ + b -= a; b ^= rot(a,19); a += c; \ + c -= b; c ^= rot(b, 4); b += a; \ +} + +/* +------------------------------------------------------------------------------- +final -- final mixing of 3 32-bit values (a,b,c) into c + +Pairs of (a,b,c) values differing in only a few bits will usually +produce values of c that look totally different. This was tested for +* pairs that differed by one bit, by two bits, in any combination + of top bits of (a,b,c), or in any combination of bottom bits of + (a,b,c). +* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed + the output delta to a Gray code (a^(a>>1)) so a string of 1's (as + is commonly produced by subtraction) look like a single 1-bit + difference. +* the base values were pseudorandom, all zero but one bit set, or + all zero plus a counter that starts at zero. + +These constants passed: + 14 11 25 16 4 14 24 + 12 14 25 16 4 14 24 +and these came close: + 4 8 15 26 3 22 24 + 10 8 15 26 3 22 24 + 11 8 15 26 3 22 24 +------------------------------------------------------------------------------- +*/ +#define final(a,b,c) \ +{ \ + c ^= b; c -= rot(b,14); \ + a ^= c; a -= rot(c,11); \ + b ^= a; b -= rot(a,25); \ + c ^= b; c -= rot(b,16); \ + a ^= c; a -= rot(c,4); \ + b ^= a; b -= rot(a,14); \ + c ^= b; c -= rot(b,24); \ +} + +/* +-------------------------------------------------------------------- + This works on all machines. To be useful, it requires + -- that the key be an array of uint32_t's, and + -- that the length be the number of uint32_t's in the key + + The function hashword() is identical to hashlittle() on little-endian + machines, and identical to hashbig() on big-endian machines, + except that the length has to be measured in uint32_ts rather than in + bytes. hashlittle() is more complicated than hashword() only because + hashlittle() has to dance around fitting the key bytes into registers. +-------------------------------------------------------------------- +*/ +uint32_t hashword( +const uint32_t *k, /* the key, an array of uint32_t values */ +size_t length, /* the length of the key, in uint32_ts */ +uint32_t initval) /* the previous hash, or an arbitrary value */ +{ + uint32_t a,b,c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; + + /*------------------------------------------------- handle most of the key */ + while (length > 3) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 uint32_t's */ + switch(length) /* all the case statements fall through */ + { + case 3 : c+=k[2]; + case 2 : b+=k[1]; + case 1 : a+=k[0]; + final(a,b,c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + return c; +} + + +/* +-------------------------------------------------------------------- +hashword2() -- same as hashword(), but take two seeds and return two +32-bit values. pc and pb must both be nonnull, and *pc and *pb must +both be initialized with seeds. If you pass in (*pb)==0, the output +(*pc) will be the same as the return value from hashword(). +-------------------------------------------------------------------- +*/ +void hashword2 ( +const uint32_t *k, /* the key, an array of uint32_t values */ +size_t length, /* the length of the key, in uint32_ts */ +uint32_t *pc, /* IN: seed OUT: primary hash value */ +uint32_t *pb) /* IN: more seed OUT: secondary hash value */ +{ + uint32_t a,b,c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; + c += *pb; + + /*------------------------------------------------- handle most of the key */ + while (length > 3) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 uint32_t's */ + switch(length) /* all the case statements fall through */ + { + case 3 : c+=k[2]; + case 2 : b+=k[1]; + case 1 : a+=k[0]; + final(a,b,c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + *pc=c; *pb=b; +} + + +/* +------------------------------------------------------------------------------- +hashlittle() -- hash a variable-length key into a 32-bit value + k : the key (the unaligned variable-length array of bytes) + length : the length of the key, counting by bytes + initval : can be any 4-byte value +Returns a 32-bit value. Every bit of the key affects every bit of +the return value. Two keys differing by one or two bits will have +totally different hash values. + +The best hash table sizes are powers of 2. There is no need to do +mod a prime (mod is sooo slow!). If you need less than 32 bits, +use a bitmask. For example, if you need only 10 bits, do + h = (h & hashmask(10)); +In which case, the hash table should have hashsize(10) elements. + +If you are hashing n strings (uint8_t **)k, do it like this: + for (i=0, h=0; i 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]&0xffffff" actually reads beyond the end of the string, but + * then masks off the part it's not allowed to read. Because the + * string is aligned, the masked-off tail is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff; a+=k[0]; break; + case 6 : b+=k[1]&0xffff; a+=k[0]; break; + case 5 : b+=k[1]&0xff; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff; break; + case 2 : a+=k[0]&0xffff; break; + case 1 : a+=k[0]&0xff; break; + case 0 : return c; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + k8 = (const uint8_t *)k; + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ + case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ + case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ + case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ + case 1 : a+=k8[0]; break; + case 0 : return c; + } + +#endif /* !valgrind */ + + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ + const uint8_t *k8; + + /*--------------- all but last block: aligned reads and different mixing */ + while (length > 12) + { + a += k[0] + (((uint32_t)k[1])<<16); + b += k[2] + (((uint32_t)k[3])<<16); + c += k[4] + (((uint32_t)k[5])<<16); + mix(a,b,c); + length -= 12; + k += 6; + } + + /*----------------------------- handle the last (probably partial) block */ + k8 = (const uint8_t *)k; + switch(length) + { + case 12: c+=k[4]+(((uint32_t)k[5])<<16); + b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ + case 10: c+=k[4]; + b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ + case 6 : b+=k[2]; + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ + case 2 : a+=k[0]; + break; + case 1 : a+=k8[0]; + break; + case 0 : return c; /* zero length requires no mixing */ + } + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + a += ((uint32_t)k[1])<<8; + a += ((uint32_t)k[2])<<16; + a += ((uint32_t)k[3])<<24; + b += k[4]; + b += ((uint32_t)k[5])<<8; + b += ((uint32_t)k[6])<<16; + b += ((uint32_t)k[7])<<24; + c += k[8]; + c += ((uint32_t)k[9])<<8; + c += ((uint32_t)k[10])<<16; + c += ((uint32_t)k[11])<<24; + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=((uint32_t)k[11])<<24; + case 11: c+=((uint32_t)k[10])<<16; + case 10: c+=((uint32_t)k[9])<<8; + case 9 : c+=k[8]; + case 8 : b+=((uint32_t)k[7])<<24; + case 7 : b+=((uint32_t)k[6])<<16; + case 6 : b+=((uint32_t)k[5])<<8; + case 5 : b+=k[4]; + case 4 : a+=((uint32_t)k[3])<<24; + case 3 : a+=((uint32_t)k[2])<<16; + case 2 : a+=((uint32_t)k[1])<<8; + case 1 : a+=k[0]; + break; + case 0 : return c; + } + } + + final(a,b,c); + return c; +} + + +/* + * hashlittle2: return 2 32-bit hash values + * + * This is identical to hashlittle(), except it returns two 32-bit hash + * values instead of just one. This is good enough for hash table + * lookup with 2^^64 buckets, or if you want a second hash if you're not + * happy with the first, or if you want a probably-unique 64-bit ID for + * the key. *pc is better mixed than *pb, so use *pc first. If you want + * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". + */ +void hashlittle2( + const void *key, /* the key to hash */ + size_t length, /* length of the key */ + uint32_t *pc, /* IN: primary initval, OUT: primary hash */ + uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ +{ + uint32_t a,b,c; /* internal state */ + union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc; + c += *pb; + + u.ptr = key; + if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { + const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ +#ifdef VALGRIND + const uint8_t *k8; +#endif + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]&0xffffff" actually reads beyond the end of the string, but + * then masks off the part it's not allowed to read. Because the + * string is aligned, the masked-off tail is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff; a+=k[0]; break; + case 6 : b+=k[1]&0xffff; a+=k[0]; break; + case 5 : b+=k[1]&0xff; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff; break; + case 2 : a+=k[0]&0xffff; break; + case 1 : a+=k[0]&0xff; break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + k8 = (const uint8_t *)k; + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ + case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ + case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ + case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ + case 1 : a+=k8[0]; break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + +#endif /* !valgrind */ + + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ + const uint8_t *k8; + + /*--------------- all but last block: aligned reads and different mixing */ + while (length > 12) + { + a += k[0] + (((uint32_t)k[1])<<16); + b += k[2] + (((uint32_t)k[3])<<16); + c += k[4] + (((uint32_t)k[5])<<16); + mix(a,b,c); + length -= 12; + k += 6; + } + + /*----------------------------- handle the last (probably partial) block */ + k8 = (const uint8_t *)k; + switch(length) + { + case 12: c+=k[4]+(((uint32_t)k[5])<<16); + b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ + case 10: c+=k[4]; + b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ + case 6 : b+=k[2]; + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ + case 2 : a+=k[0]; + break; + case 1 : a+=k8[0]; + break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + a += ((uint32_t)k[1])<<8; + a += ((uint32_t)k[2])<<16; + a += ((uint32_t)k[3])<<24; + b += k[4]; + b += ((uint32_t)k[5])<<8; + b += ((uint32_t)k[6])<<16; + b += ((uint32_t)k[7])<<24; + c += k[8]; + c += ((uint32_t)k[9])<<8; + c += ((uint32_t)k[10])<<16; + c += ((uint32_t)k[11])<<24; + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=((uint32_t)k[11])<<24; + case 11: c+=((uint32_t)k[10])<<16; + case 10: c+=((uint32_t)k[9])<<8; + case 9 : c+=k[8]; + case 8 : b+=((uint32_t)k[7])<<24; + case 7 : b+=((uint32_t)k[6])<<16; + case 6 : b+=((uint32_t)k[5])<<8; + case 5 : b+=k[4]; + case 4 : a+=((uint32_t)k[3])<<24; + case 3 : a+=((uint32_t)k[2])<<16; + case 2 : a+=((uint32_t)k[1])<<8; + case 1 : a+=k[0]; + break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + } + + final(a,b,c); + *pc=c; *pb=b; +} + + + +/* + * hashbig(): + * This is the same as hashword() on big-endian machines. It is different + * from hashlittle() on all machines. hashbig() takes advantage of + * big-endian byte ordering. + */ +uint32_t hashbig( const void *key, size_t length, uint32_t initval) +{ + uint32_t a,b,c; + union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; + + u.ptr = key; + if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { + const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ +#ifdef VALGRIND + const uint8_t *k8; +#endif + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]<<8" actually reads beyond the end of the string, but + * then shifts out the part it's not allowed to read. Because the + * string is aligned, the illegal read is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; + case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; + case 5 : b+=k[1]&0xff000000; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff00; break; + case 2 : a+=k[0]&0xffff0000; break; + case 1 : a+=k[0]&0xff000000; break; + case 0 : return c; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + k8 = (const uint8_t *)k; + switch(length) /* all the case statements fall through */ + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ + case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ + case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ + case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ + case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ + case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ + case 1 : a+=((uint32_t)k8[0])<<24; break; + case 0 : return c; + } + +#endif /* !VALGRIND */ + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += ((uint32_t)k[0])<<24; + a += ((uint32_t)k[1])<<16; + a += ((uint32_t)k[2])<<8; + a += ((uint32_t)k[3]); + b += ((uint32_t)k[4])<<24; + b += ((uint32_t)k[5])<<16; + b += ((uint32_t)k[6])<<8; + b += ((uint32_t)k[7]); + c += ((uint32_t)k[8])<<24; + c += ((uint32_t)k[9])<<16; + c += ((uint32_t)k[10])<<8; + c += ((uint32_t)k[11]); + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=k[11]; + case 11: c+=((uint32_t)k[10])<<8; + case 10: c+=((uint32_t)k[9])<<16; + case 9 : c+=((uint32_t)k[8])<<24; + case 8 : b+=k[7]; + case 7 : b+=((uint32_t)k[6])<<8; + case 6 : b+=((uint32_t)k[5])<<16; + case 5 : b+=((uint32_t)k[4])<<24; + case 4 : a+=k[3]; + case 3 : a+=((uint32_t)k[2])<<8; + case 2 : a+=((uint32_t)k[1])<<16; + case 1 : a+=((uint32_t)k[0])<<24; + break; + case 0 : return c; + } + } + + final(a,b,c); + return c; +} + + +#ifdef SELF_TEST + +/* used for timings */ +void driver1() +{ + uint8_t buf[256]; + uint32_t i; + uint32_t h=0; + time_t a,z; + + time(&a); + for (i=0; i<256; ++i) buf[i] = 'x'; + for (i=0; i<1; ++i) + { + h = hashlittle(&buf[0],1,h); + } + time(&z); + if (z-a > 0) printf("time %d %.8x\n", z-a, h); +} + +/* check that every input bit changes every output bit half the time */ +#define HASHSTATE 1 +#define HASHLEN 1 +#define MAXPAIR 60 +#define MAXLEN 70 +void driver2() +{ + uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; + uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; + uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; + uint32_t x[HASHSTATE],y[HASHSTATE]; + uint32_t hlen; + + printf("No more than %d trials should ever be needed \n",MAXPAIR/2); + for (hlen=0; hlen < MAXLEN; ++hlen) + { + z=0; + for (i=0; i>(8-j)); + c[0] = hashlittle(a, hlen, m); + b[i] ^= ((k+1)<>(8-j)); + d[0] = hashlittle(b, hlen, m); + /* check every bit is 1, 0, set, and not set at least once */ + for (l=0; lz) z=k; + if (k==MAXPAIR) + { + printf("Some bit didn't change: "); + printf("%.8x %.8x %.8x %.8x %.8x %.8x ", + e[0],f[0],g[0],h[0],x[0],y[0]); + printf("i %d j %d m %d len %d\n", i, j, m, hlen); + } + if (z==MAXPAIR) goto done; + } + } + } + done: + if (z < MAXPAIR) + { + printf("Mix success %2d bytes %2d initvals ",i,m); + printf("required %d trials\n", z/2); + } + } + printf("\n"); +} + +/* Check for reading beyond the end of the buffer and alignment problems */ +void driver3() +{ + uint8_t buf[MAXLEN+20], *b; + uint32_t len; + uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; + uint32_t h; + uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; + uint32_t i; + uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; + uint32_t j; + uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; + uint32_t ref,x,y; + uint8_t *p; + + printf("Endianness. These lines should all be the same (for values filled in):\n"); + printf("%.8x %.8x %.8x\n", + hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13), + hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13), + hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13)); + p = q; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), + hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), + hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), + hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), + hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), + hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); + p = &qq[1]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), + hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), + hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), + hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), + hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), + hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); + p = &qqq[2]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), + hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), + hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), + hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), + hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), + hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); + p = &qqqq[3]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), + hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), + hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), + hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), + hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), + hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); + printf("\n"); + + /* check that hashlittle2 and hashlittle produce the same results */ + i=47; j=0; + hashlittle2(q, sizeof(q), &i, &j); + if (hashlittle(q, sizeof(q), 47) != i) + printf("hashlittle2 and hashlittle mismatch\n"); + + /* check that hashword2 and hashword produce the same results */ + len = 0xdeadbeef; + i=47, j=0; + hashword2(&len, 1, &i, &j); + if (hashword(&len, 1, 47) != i) + printf("hashword2 and hashword mismatch %x %x\n", + i, hashword(&len, 1, 47)); + + /* check hashlittle doesn't read before or after the ends of the string */ + for (h=0, b=buf+1; h<8; ++h, ++b) + { + for (i=0; i