]> code.citadel.org Git - citadel.git/blob - rss2ctdl/md5.c
676881210a57eb51ed44e1a2e17b6f7247abdfc4
[citadel.git] / rss2ctdl / md5.c
1 /*
2  * $Id$
3  * 
4  * Copyright 2003-2004 Oliver Feiler <kiza@kcore.de>
5  *
6  * md5.c
7  *
8  * This code has been slightly modified from its original.
9  * The endian check via evaluating endian.h has been
10  * replaced with the code in void byteReverse().
11  */
12
13 /*
14  * This code implements the MD5 message-digest algorithm.
15  * The algorithm is due to Ron Rivest.  This code was
16  * written by Colin Plumb in 1993, no copyright is claimed.
17  * This code is in the public domain; do with it what you wish.
18  *
19  * Equivalent code is available from RSA Data Security, Inc.
20  * This code has been tested against that, and is equivalent,
21  * except that you don't need to include two pages of legalese
22  * with every copy.
23  *
24  * To compute the message digest of a chunk of bytes, declare an
25  * MD5Context structure, pass it to MD5Init, call MD5Update as
26  * needed on buffers full of bytes, and then call MD5Final, which
27  * will fill a supplied 16-byte array with the digest.
28  */
29
30 #include <string.h>             /* for memcpy() */
31 #include "md5.h"
32
33 void byteReverse(unsigned char *buf, unsigned longs);
34
35 static int endian_check = -1;
36
37 /*
38  * Note: this code is harmless on little-endian machines.
39  */
40 void byteReverse(unsigned char *buf, unsigned longs)
41 {
42     uint32 t;
43         static uint32 d = 0xdeadbeef;
44         unsigned char *b = (unsigned char *) &d;
45     
46     if (endian_check == -1) {
47                 if (b[0] == 0xde)
48                     endian_check = 1;
49                 else
50                     endian_check = 0;
51     }
52     
53     if (endian_check == 0)
54         return;
55     
56     do {
57         t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
58             ((unsigned) buf[1] << 8 | buf[0]);
59         *(uint32 *) buf = t;
60         buf += 4;
61     } while (--longs);
62 }
63
64 /*
65  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
66  * initialization constants.
67  */
68 void MD5Init(struct MD5Context *ctx)
69 {
70     ctx->buf[0] = 0x67452301;
71     ctx->buf[1] = 0xefcdab89;
72     ctx->buf[2] = 0x98badcfe;
73     ctx->buf[3] = 0x10325476;
74
75     ctx->bits[0] = 0;
76     ctx->bits[1] = 0;
77 }
78
79 /*
80  * Update context to reflect the concatenation of another buffer full
81  * of bytes.
82  */
83 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
84 {
85     uint32 t;
86
87     /* Update bitcount */
88
89     t = ctx->bits[0];
90     if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
91         ctx->bits[1]++;         /* Carry from low to high */
92     ctx->bits[1] += len >> 29;
93
94     t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
95
96     /* Handle any leading odd-sized chunks */
97
98     if (t) {
99         unsigned char *p = (unsigned char *) ctx->in + t;
100
101         t = 64 - t;
102         if (len < t) {
103             memcpy(p, buf, len);
104             return;
105         }
106         memcpy(p, buf, t);
107         byteReverse(ctx->in, 16);
108         MD5Transform(ctx->buf, (uint32 *) ctx->in);
109         buf += t;
110         len -= t;
111     }
112     /* Process data in 64-byte chunks */
113
114     while (len >= 64) {
115         memcpy(ctx->in, buf, 64);
116         byteReverse(ctx->in, 16);
117         MD5Transform(ctx->buf, (uint32 *) ctx->in);
118         buf += 64;
119         len -= 64;
120     }
121
122     /* Handle any remaining bytes of data. */
123
124     memcpy(ctx->in, buf, len);
125 }
126
127 /*
128  * Final wrapup - pad to 64-byte boundary with the bit pattern 
129  * 1 0* (64-bit count of bits processed, MSB-first)
130  */
131 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
132 {
133     unsigned count;
134     unsigned char *p;
135
136     /* Compute number of bytes mod 64 */
137     count = (ctx->bits[0] >> 3) & 0x3F;
138
139     /* Set the first char of padding to 0x80.  This is safe since there is
140        always at least one byte free */
141     p = ctx->in + count;
142     *p++ = 0x80;
143
144     /* Bytes of padding needed to make 64 bytes */
145     count = 64 - 1 - count;
146
147     /* Pad out to 56 mod 64 */
148     if (count < 8) {
149         /* Two lots of padding:  Pad the first block to 64 bytes */
150         memset(p, 0, count);
151         byteReverse(ctx->in, 16);
152         MD5Transform(ctx->buf, (uint32 *) ctx->in);
153
154         /* Now fill the next block with 56 bytes */
155         memset(ctx->in, 0, 56);
156     } else {
157         /* Pad block to 56 bytes */
158         memset(p, 0, count - 8);
159     }
160     byteReverse(ctx->in, 14);
161
162     /* Append length in bits and transform */
163     ((uint32 *) ctx->in)[14] = ctx->bits[0];
164     ((uint32 *) ctx->in)[15] = ctx->bits[1];
165
166     MD5Transform(ctx->buf, (uint32 *) ctx->in);
167     byteReverse((unsigned char *) ctx->buf, 4);
168     memcpy(digest, ctx->buf, 16);
169     memset(ctx, 0, sizeof(ctx));        /* In case it's sensitive */
170 }
171
172 /* The four core functions - F1 is optimized somewhat */
173
174 /* #define F1(x, y, z) (x & y | ~x & z) */
175 #define F1(x, y, z) (z ^ (x & (y ^ z)))
176 #define F2(x, y, z) F1(z, x, y)
177 #define F3(x, y, z) (x ^ y ^ z)
178 #define F4(x, y, z) (y ^ (x | ~z))
179
180 /* This is the central step in the MD5 algorithm. */
181 #define MD5STEP(f, w, x, y, z, data, s) \
182         ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
183
184 /*
185  * The core of the MD5 algorithm, this alters an existing MD5 hash to
186  * reflect the addition of 16 longwords of new data.  MD5Update blocks
187  * the data and converts bytes into longwords for this routine.
188  */
189 void MD5Transform(uint32 buf[4], uint32 const in[16])
190 {
191     register uint32 a, b, c, d;
192
193     a = buf[0];
194     b = buf[1];
195     c = buf[2];
196     d = buf[3];
197
198     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
199     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
200     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
201     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
202     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
203     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
204     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
205     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
206     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
207     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
208     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
209     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
210     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
211     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
212     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
213     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
214
215     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
216     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
217     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
218     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
219     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
220     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
221     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
222     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
223     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
224     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
225     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
226     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
227     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
228     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
229     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
230     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
231
232     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
233     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
234     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
235     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
236     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
237     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
238     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
239     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
240     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
241     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
242     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
243     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
244     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
245     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
246     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
247     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
248
249     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
250     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
251     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
252     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
253     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
254     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
255     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
256     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
257     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
258     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
259     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
260     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
261     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
262     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
263     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
264     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
265
266     buf[0] += a;
267     buf[1] += b;
268     buf[2] += c;
269     buf[3] += d;
270 }